

Modern Computing

Contents:

	Using Uniqueness Types

	Subtyping in Felix

	Open Recursion

	Cofunctions

	Coroutine Basics

	What’s Wrong With C++

Indices and tables

	Index

	Module Index

	Search Page

Using Uniqueness Types

Ownership

Uniqueness types provide a way to help enforce a
contract of exclusive ownership. Lets look at an example
to see how they work.

Raw Operations

The first thing we’re going to do is provide a Felix binding to
some basic C string manipulation routines.

Raw Memory Manipulation

class Memory
{
 gen malloc: !ints -> address = 'checked_malloc($1)'
 requires Cxx_headers::cstdlib, checked_malloc
 ;

 proc free: address =
 "::std::free($1);"
 requires Cxx_headers::cstdlib
 ;

 gen realloc: address * !ints -> address =
 "::std::realloc($1,$2)"
 requires Cxx_headers::cstdlib
 ;
}

Raw C String Manipulation

class CString
{
 //$ C strcpy.
 proc strcpy: +char * +char =
 "(void)::std::strcpy($1,$2);"
 requires Cxx_headers::cstring
 ;

 //$ C strncpy.
 proc strncpy: +char * +char * !ints =
 "(void)::std::strncpy($1,$2,$3);"
 requires Cxx_headers::cstring
 ;

 //$ C strlen: NTBS length.
 fun strlen: +char -> size = "::std::strlen($1)"
 requires Cxx_headers::cstring
 ;

 fun len (s:+char) => strlen s;

 //$ Traditional NTBS strdup.
 gen strdup: +char -> +char =
 "::flx::rtl::strutil::flx_strdup($1)"
 requires package "flx_strutil"
 ;
}

Problems with Raw Operations

The raw operations shown above are difficult to use safely,
whether you’re writing code in C, C++, or Felix.

What can go wrong?

Forgetting to Free

After you malloc a string, you have to eventually
free it or you get a memory leak. It is easy to forget
to do this.

Double Free

An even worse problem is freeing the memory you allocated
twice. This may cause your program to abort, particularly
if you have a modern checking allocator. Historically,
however, the double free simply corrupted memory, and
all sorts of weird things could happen. If you were lucky,
you would soon get a core dump, if you were unlucky, your program
ran but produced the wrong results.

Dangling Pointers

Another problem which occurs is that you free the
pointer, but then go on and use it anyhow. This is known
as a dangling pointer, since it points off into the
wild blue yonder. Again, if you’re lucky, you might get
a program abort quickly, but it is easy to be unlucky.

Invalid Pointers

Because allocators often maintain free lists, with the most
recently freed memory at the top, if you free your memory,
thinking it is gone, but retain a pointer to it somewhere,
then allocate a new block of memory, it is quite likely to be
to the same location as the last memory you freed.

Now, your old pointer is not actually dangling, it is pointing,
unexpectedly, into the new string you allocated. If you then
write through that pointer, the memory is changed at mysterious
modifications appear in the string, even though you have not
made any changes through the new pointer you allocated.

C++ Strings: Encapulsation

The very first class every C++ programmer wrote
was a string class.

The technique used was basic object orientation.
The idea is to hide the pointer in a C++ class,
by making it a private member,
and provide public methods that safely manipulate the string,
without revealing it to the programmer.

This technique is using abstraction for the purpose
of hiding representation details. It is a good method,
but C++ string classes had their problems.

Lack of facilities

A key problem with any string class is that since you cannot
access the underlying pointer directly, you may want to do
something to the string which either cannot be done,
or can only be done inefficiently.

Most string classes programmers wrote started off simple,
but the programmer had to come back time and again,
to add new methods to the class so things could be
both efficient and safe.

For this reason most string classes acquired a mix of
two flavours to solve this problem: the first was to provide
a rich, kitchen sink of methods that covered as much as
experience showed was required.

The second method was to provide a cheat method that did
actually expose the underlying pointer.

Copying

A second serious problem with string classes was that in
order to ensure the user could modify the string,
without the modifications turning up unexpectedly
in someone elses string, the string had to be copied
quite often.

C++ did this copying using a copy constructor, so that,
for example, when you pass a string to a function,
the function is free to modify it.

The cost of copying is reduced in C++ by using const
references, however this method is not safe either.
The problem is, the same string can be passed as both
a const and non-const reference, and the function
receiving them can modify the non-const version,
and the const version mysteriously changes.

This is an example of a general class of problems
known as aliasing problems, characterised by the
existence of a single object with multiple names,
or, more precisely, multiple access paths.

Move Constructors

In C++11 a major advance was made due to the introduction
of rvalue references. An rvalue reference can only bind
to an rvalue, and rvalues are always unique. So an rvalue
passed to a function with an rvalue reference parameter can safely
modify the underlying memory, because the type system
ensures it is the exclusive owner.

C++ uses this feature primarily by allowing a so-called
move constructor, which, instead of copying the underlying
memory, simply moves the pointer from the argument object
to the parameter object, leaving the argument evacuted.

It helps a lot, providing reasonable safety and improved
performance, but we can do better!

What is the Real Problem?

We need to fully understand the actual problem here.
The difficulty arises because the pointer and the
memory it refers to are decoupled. They’re different
things that have to be kept in sync. You can copy the
memory, and copy the pointer, separately.

The C++ class enforces coupling, and it enforces ownership
by copying. The more recent use of move constructors
leverages the type system to gain performance by
using the knowledge that rvalues are unique.

So the problem is about coupling, and we can state this
another way: its about ownership. If there are many
copies of the pointer for one memory block, ownership
is shared. If there is only one, it is exclusive.

If we can enforce exclusive ownership, mutations are
always safe, in particular, exclusive ownership
implies a one to one correspondence between the
representative of a value and the value itself.
It means, if the string is deleted, the pointer
must be inacessable.

Uniqueness Types

Felix provides some machinery to further aid in
establishing and maintaining knowledge of, and the
ability to, reason about ownership: uniqueness types.

The facility is used to enforce a contract, but it does
not provide a global safety guarrantee. Our system
provides a type constructor uniq which can be
applied to any type.

We also provide three operators which can be applied to
expressions. The box operator takes a value of some
type T, and returns a value of type uniq T. The
unbox operator takes a value of type uniq T,
for some type T, and returns a value of type T.

These operators are type coercions which have no
run time impact. The uniq typing is erased by
the compiler in the back end after type checking,
ensuring there is no run time penalty for unique
typing.

In addition there is an unsafe cheat operator
peek which can be applied to a read-only pointer
to store of a uniq type, which returns the
stored value.

Finally there is an unsafe procedure kill
which consumes a uniq value without doing
anything. It can be used when the value
has been consumed in a way that has escaped
the notice of the type system, such as by
use of a pointer, not notify the type system
that the value is dead. It has no utility
unless applied to a variable.

open class Unique
{
 // box up a value as a unique thing
 fun box[T] : T -> _uniq T = "($t)";

 // unsafely unpack the unique box
 fun unbox[T] : _uniq T -> T = "($t)";

 // kill a live unique value
 proc kill[T] : uniq T = ";";

 // functor for typing
 typedef fun uniq (T:TYPE):TYPE => _uniq T;

 // peek inside the box without changing livenes state
 fun peek[T] : &<(uniq T) -> T = "*($t)";
}

In this code the type operator _uniq is the compiler
intrinsic, the functor uniq is used to provide the
public version.

The system also provides conversions
to strings which delegate to the conversions for
the underlying type, not shown here.

Example: UniqueCStrings

This example presents a cut down version of the
Felix standard library component UniqueCStrings
which illustrates a real use of uniqueness typing.

Setup

We are going to use a class to encapsulate our
methods so we start like this:

open class UniqueCStrings
{
 open CString;
 open Memory;

We have included the unsafe raw operations inside
the class privately for our use.

Abstraction

We’re going to steal the OO idea and make out
representation type abstract.

// abstract representation
private type _ucstr = new +char;

In Felix, the type binder introduces an abstract type.
The RHS of the construction may be either the new operator
followed by a type expression, or it may be a C++ type
wrapped in a string. In the above the type +char means
an incrementable non-null pointer to an array of char.

As well as being abstract, we’re also preventing the
name _ucstr from being visible outside the enclosing
class UniqueCStrings.

Uniqueness

We’re going to make the publically visible
version a unique type.

// make it uniq
typedef ucstr = box _ucstr;

The type constructor uniq specifies a uniquely
typed version of the type it qualifies.

Internal Access

Felix enforces abstraction fully. It does this by
providing two methods for an abstract type,
both of which are private so they can only be used
inside the class defining the abstract type.

These methods are _repr_ which casts the abstract
type to its implementation, and _make_ucstr which
casts the representation to the abstraction.

Since these are a bit messy to write, we will provide
private wrappers functions:

// privatise access to representation
private fun pack (p: +char) => p._make__ucstr.uniq;
private fun unpack (var p: ucstr) : +char => p.unbox._repr_;

You should think of pack as a way to take
a raw char pointer and wrap it up in a package
you can move about. You can pass this box from
one variable to another. If a function has a local
variable, we can say the function owns that variable.
The variable is like a cupboard, into which you can
put things.

You can take the box out of one cupboard,
and put it it another, but you cannot easily
copy the box, because you cannot see inside it.

When you have a new box put in your cupboard,
you can take the box out of the cupboard
and unpack it to find out what is inside.
You can then play with its contents with
relative safety, knowing that it is exclusively yours
to play with. Its important to note, there isn’t
space to unpack your box inside the cpuboard. Its like
a mail box, you have to take your letter out, emptying
the mail box, before you can open the letter.

Constructors

Now we need a constructor. We’re going to use a C++ string
which is a Felix string and copy its value into an a C array
using the method _unsafe_cstr:

// Constructors
ctor ucstr (var s:string) = {
 // malloc'd copy of string contents
 var p = s._unsafe_cstr;
 return pack p;
}

What _unsafe_cstr does is malloc a new array and copy the contents of the
C++ internal array into it, it used the C++ method c_str()
to gain access to the internal C array. This is the C++ string class
cheat method. Our _unsafe_cstr is not safe because it is returning a raw
pointer which we might forget to free, but we’re trying to fix
that by coercing it to a unique type. By wrapping into a box.

Another constructor just copies an existing C string
and packs it up into a unique type:

ctor ucstr (s:+char) => s.strdup.pack;

You can see here our code is doing unsafe things, with raw
C strings, but we are then using pack to at least
notify our client. Because the constructor returns a
unique type, the client of the constructor believes they
have exclusive ownership of the returned value.

And that indeed is the intent and purpose of our
constructor code, and we can easily verify we have
met our part of the bargain.

Destructor

We need to provide a way to free our string:

// deletes the store
proc delete (var p:ucstr) {
 var q = unpack p;
 free q;
}

How do we know it is safe to free the underlying pointer here?
The answer is, as the client of the unique value, we are
entitled to believe that we are the exclusive owner of it.
It has been moved to the variable p which is exclusively
our variable, and it has a type which indicates it holds
an exclusively owned value.

The type system cannot enforce the exclusive ownership,
but it does enforce a useful contract. It ensures that
if the caller claims to be the exclusive owner by
typing the argument value uniq then that claim
will be recognised by the callee routine because
the type system will ensure that the parameter is
also typed uniq.

In other words, this is a coupling contract. The argument
passing to the parameter is a contract of transfer of
ownership witnessed by the type system. All bets are
off, before the client signs the contract by wrapping
the value with a uniq operator. All bets are off,
after the service routine signs the contract by
accepting the packed value, and then unpacks it.

What the contract enforces is an agreement that
the value is moved from the client routine
to the service routine, instead of being copied.

Display

We have to be able to see our strings. We already have facilities
to see Felix strings which are bindings of C++ strings. So we
will leverage our generic classes Str and Repr which allow
us to specify a default way to convert any particular type
to a standard string:

instance Str[_ucstr] { fun str(p:_ucstr)=>p._repr_.str; }
instance Repr[_ucstr] { fun repr(p:_ucstr)=>p._repr_.repr; }

inherit Str[_ucstr];
inherit Repr[_ucstr];

The instances there implement the functions str and repr
which are for displaying as human readable text and
machine readble programming language level literals,
respectively.

Then, we yank bindings to these methods into our class
with the inherit directives.

What is important to observe about these routines is that
they do not operate on the unique type. The values that they
receive are abstracted representations of the underlying
C pointer which we observe using the private _repr_
method. What this means, is that you cannot apply the
str operator to a packed up box, it won’t work on a uniq
value.

The box has to be unpacked first. Here, we’re using abstraction
to ensure that we can provide this operation to the user
without needing to expose the underlying pointer, but the user
must already own the value and have taken responsibility for its
safe management by unpacking a unique value.

Length

How long is a piece of string?

// length
fun len(var s:&<ucstr) : size => s.peek._repr_.strlen;

This method accepts a read-only pointer to a ucstr
because it only wants to inspect it. Such a pointer
is unsafe in general! We need to examine the code carefully
to see that whilst we have unsafely acquired a reference
to the ucstr, we have used it and then promptly forgotten it.

The pointer we acquired is an alias so retaining it would
threaten ownership. But we used it and forgot it immediately,
so all is well. The peek operator you see above is used
to look inside a unique type, which is not safe in general,
it is only safe if you only take a peek.

The machinery of taking the address of a uniq value and
then passing it to a client is known as lending the value.
It is not safe in general to lend something to a service
you do not trust. We can trust this function, because
we can see its implementation. In particular we can
see that whilst it does peek inside the packed up box,
in order to calculate the length of the string, it does
not pass on the secret knowledge to anyone else, it
returns only the length, not the pointer to the C array
it peeked at. Similarly, the len function itself
has trusted that the C strlen function has only used
the supplied pointer transiently.

Modifying One Character

Now we’re going to modify one character. We use
an unsafe function, Carray::set to so this.
It operates on a pointer to a C array, or +char
type. Here we make no assurance that the location being
set is inside the string. This operation, therefore
is unsafe, in that the index could be out of bounds.
Our concern here is not with the validity of the bound,
but that, assuming the bound is indeed valid,
we can safely modify the string in place and return
it, without anyone observing we did so.

// modify one char
fun set (var s:ucstr, i:int, c:char) : ucstr = {
 var cs = unpack s;
 Carray::set (cs, i, c);
 return cs.pack;
}

Now, we reason that, because s has a uniq type, we are the
sole owner, so no one else can observe any change we make.
So instead of making a copy of the string and modifying
it, we can safely modify the original.

That is the key to uniqueness types.
Using the type system to reason that a mutation cannot
be a side effect, because, whilst there is actually
an effect in the form of a mutation, it can only be
observed in the output of the function. It cannot be
observed on the side because no one else knows about it.

To say this another way, the caller cannot know if the
string was modified, or a copy created and modified.
What we gain is this: if the caller believes they have
exclusive ownership, the caller can sign the transfer
of ownership contract by making the type unique.
In doing so they enable a significant optimisation
whereby the need to copy the string to avoid a
side effect is removed, a significant saving in
both time and memory.

The saving is actually considerably greater because
the system is relieved of the cost of calculating
whether the string is reachable from any live part
of the program, a calculation which is normally done
by the garbage collector.

Appending two strings

Now we get to a more difficult routine.

// append: consumes y
fun append (var x:ucstr, var y:ucstr): ucstr = {
 var cx = unpack x;
 var cy = unpack y;
 var lx = cx.len;
 var ly = cy.len;
 var r = realloc (cx, lx+ly+1);
 strncpy (r+lx,cy,ly+1);
 free cy;
 return pack r;
}

This routine takes two unique arguments, and returns their
concatenation. It destroys both the arguments in the processes.
We unpack the two arguments to their underlying pointers,
and use C to calculate their lengths. Then we reallocate
the first argument, which can either add more store to its
end, or make a completely new copy with extra store at the
end, and free the old string.

Then we add the characters of the second argument at the
end of the first, in the space we just allocated, and
free the second argument.

You may ask, how do we know we can destroy these arguments
safely?

The answer is that we own them exclusively. No one else knows
about them, we can do what we like with them. Because they
have a uniq type.

In fact that is not quite correct. There is one thing we
cannot do with a uniquely typed value: forget it.
We’re responsible for it, we cannot forget it.
We have to either return it, handing back ownership
to our caller, or free it. We freed the second argument in this routine
and returned the first, with modifications, and possibly at a new
location. Realloc took care of what to do if we needed a new
store: it freed the old store and allocated the new store for us.
That’s what realloc is specified to do.

Nondestructive Append

Here’s how to avoid destroying the second argument:

// append: doesnt consume y
noinline fun append (var x:ucstr, var py:&ucstr): ucstr = {
 var cx = unpack x;
 var cy = py.peek._repr_;
 var lx = cx.len;
 var ly = cy.len;
 var r = realloc (cx, lx+ly+1);
 strncpy (r+lx,cy,ly+1);
 return pack r;
}

This is similar to our destructive version, however
because a pointer was passed as the second argument
instead of a value, we know we’re only allowed to
peek at it.

The type system will not stop you, if, instead of just
peeking, you dereference the pointer, unpack the
resulting value, and then free it.

Felix uniq types do not ensure correct usage.
What they actually do, is make the contract explicit.
There is enforcement, but it is not complete.

Convenience wrappers

Here are some convenience wrappers:

// nicer appends
fun + (var x:ucstr, var y:ucstr) => append (x,y);
fun + (var x:ucstr, var py:&ucstr) => append (x,py);

proc += (var lhs: &ucstr, var rhs: ucstr) =>
 lhs <- append (*lhs,rhs)
;
proc += (var lhs: &ucstr, var rhs: &ucstr) =>
 lhs <- append (*lhs,rhs)
;

These wrappers allow you to use the infix + functional
operator and += procedural instruction. Note carefully
the procedural implementations! By dereferncing the
lhs pointer we have created a uniq value. We were
only given a loan, so is this safe?

In general, it isn’t safe. But we can see here that,
although we have abused the loan by modifying the
value, we are then storing the modified value back
into the original location. We have taken the box,
opened it, changed the contents, and put them back.
The original owner remains the owner, although
the value they own has changed.

Of course, that is not only what the owner expected,
it is what the owner demanded! There’s no point putting
a broken phone in for repair, if the repair shop doesn’t
actually fix it!

Enforcement: An example of usage

Finally here is a simple example of usage.

proc test() {
 var s = ucstr "hello";
 println$ &s;
 s = set (s, 0, char "e");
 var s2 = s;
 println$ &s2;
 delete s2;
}
test();

This snippets hides something I haven’t explained yet.

See how I copied the value in variable s to s2?
No you don’t!

I didn’t copy it. I moved it. Felix enforces a special rule
for uniq types. They cannot be copied, only moved.

Programming languages have no natural syntax for movement,
only copying. So we need some help, when we do an assignment
and we really mean to move, and not copy the value.
Below I explain how we do that.

A variable of a uniq type has to be used exactly once.
If you pass the value in a variable to a function, the variable
goes out of scope and cannot be accessed. You owned the value,
but you gave away ownership.

If you do an assignment like the one from s to s2 the
same thing happens. s loses the value and s2 gains it.
Felix won’t let you use s now.

But s was already used! Yes, it was passed to set, but
set then reinitialised it. Every variable of a unique type
is either initialised or dead. Assignments from one variable
to another kill the first variable and liven the second
one. The first one has to be alive to start, and the second
one has to be dead. After the assignment, the first one
is dead and the second one is alive. Life has been moved
from one variable to another. We actually say
that we have transfered ownership, as if you have
a dog in a kennel and then give the dog as a gift
to a friend (who puts it in another kennel, or lets it
sleep on the sofa).

Taking the address of a variable does not kill it,
which means if you do take the address you must only
use it whilst the variable remains alive. Felix
does not enforce that.

So here you see the contract. Felix enforces correct
use of whole variables, the programmer must enforce
the correct use of pointers.

Errors

So what happens if you make a mistake?
Let me show you:

proc test () {
 var x = box 1;
 println$ unbox x;
 println$ unbox x;
}
test;

Here we broke the rules. We used x twice. And here is what
Felix has to say about it:

~/felix>flx tmp
Once error: Using uninitialised or already used once variable
(50313:->x)
Variable x defined at
/Users/skaller/felix/tmp.flx: line 3, cols 3 to 18
2: proc test () {
3: var x = box 1;

4: println$ unbox x;

What Felix does is a control flow analysis. The requirement
is that on every statically possible control path,
a uniquely typed variable alternates between two states:
live and dead. A variable is dead until it is initialised
or assigned to. Parameters of a function are considered live,
since we assume they were initialised by the caller with
an argument.

If the variable is passed to a function, it must be live,
but at the point it is passed it is now killed and considered
dead. Some people say the value has been consumed.

A dead variable can be relivened by assigning it a new
uniq value.

At the end of a function, all uniqely typed variables
must be dead.

Felix does NOT recognise taking the address of a variable
as significant, except in the special case the address is
immediately used as the first argument of the store at
operator <-. Tracking pointer aliases is not impossible but
it is hard to do properly, and it can be very expensive.
Felix is a lazy cat: he helps you get things right but
won’t force you.

The idea here is simple: a live variable contains a wrapped
box, a dead variable does not. When you move a value out
of a variable, it is no longer in the cupboard so the variable
is marked empty or dead. When you put something back in, the
cupboard is full and the variable live again.

Subtyping in Felix

Felix supports certain implicit conversions in certain contexts
which are considered subtyping coercions. The context currently
supported is the coercion of an argument to the type of a parameter
in a function application or procedure call.

Context of Implicit Coercions

Felix does not support implicit coercions in simple assignments
or local variable initialisations, even though in some sense
initialisation at least is somehow equivalent to binding
a parameter to an argument.

The reason is that whilst for a local variable initialisation,
there is space to write the coercion explicitly in a neutral
manner, the argument and parameter of a function call are
lexically separated.

The rule for selection of a function from an overloaded set
in the presence of implicit coercions is a generalisation
of the usual subsumption rule for overloads of polymorphic
functions, namely, the selection of the most specialised
function from the set which matches the argument.

A parameter type A is more specialised than another B
if A is a subtype of B.

This imposes a strict coherence constraint on subtyping
coercions. In particular if A is a subtype of B, and
B a subtype of C, then A must be a subtype of C as well,
and the composition of the subtyping coercions from
A to B and then B to C must be semantically equivalent
to a subtyping coercion from A to C.

Furthermore, any two subtyping coercions from A to B
must be semantically equivalent.

The transitivity rules has two vital consequences.
The first is that the compiler must be able to calculate
a composite subtyping coercion from A to C via B,
if there is a coercion from A to B and from B to C.
The second is that the programmer should take care
that if in such circumstances a coercion is also
given from A to C, it is a semantically equivalent
to the composite.

Generally, the compiler must be free to pick
any composition as the implementation of a coercion,
and we can view the picking of an efficient composition,
such as the single user defined coercion from A to C
as an optimisation.

Standard Subtyping Coercions

Record Coercions

Record support two a stage coercion rule. The first
rule is called a width coercion and allows fields
of a record to be thrown away.

The second stage, called a depth coercion,
permits the field values
to be individually coerced covariantly. In other
words a coercion from a subtype to a super type
consists of discarding some fields, and then
applying subtyping coercions to the values of
the remaining fields.

The justification of the width coercion rule is this:
if a function requires a record with a certain set
of fields, the supplying a record with more fields
is acceptable, because the function ignores
them anyhow.

Tuple Coercions

Felix supports covariant depth coercions of tuples.

We do not support width coercions, however.
The reason is that the programmer would be surprised
if components of a tuple magically disappeared
at random just to match a function signature.

In particular, since in Felix we identify a tuple
of length one with that element, allowing width coercions
would be tantamount to allowing a tuple to be supplied
if any of its components could be coerced to a function
parameter.

Array Coercions

Felix also supports covariant depth coercion
of arrays with a constraint that the same coercion
must be applied to each element of the array.

We do not support implicit with coercions because
the programmer might be surprised if an array
was magically truncated.

Polymorphic Variant Coercions

Polymorphic variant coercions also support
two stage coercions, in reversed order:
for the first stage we can covariantly coerce
the constructor arguments, and in the second
stage add additional constructors.

The justification of the width coercion rule
is this: if a function requires a polymorphic
variant from a certain set of cases which it
analyses, then the analysis will completely
handle less cases.

Function Value Coercions

Function values are coerced contravariantly
on their domain and covariantly on their
codomain.

The justification is as follows. Suppose we have
a function that accepts another function as an argument.
When we apply that function to a value, it must handle
all the argument values that the function can throw at it.
Therefore the domain of the function supplied must be a
supertype of the domain of the parameter.

Conversely, it is fine if the supplied function returns
a more restricted set of values than is required
in the context in which it is supplied, thus, the
codomain of the argument can be a subtype of the
codomain of the parameter.

Machine Pointer Coercions

Felix has three core pointer kinds: read-only pointers,
write-only pointers, and read/write pointers. Read/write
pointers are considered subtypes of read-only pointers
and write-only pointers with an invariant target type.

In theory, read-only pointers should be covariant
and write only pointers should be contravariant,
so that read-write pointers are invariant.

Top and Bottom

In a subtyping lattice, it is usual in the theory
to have a type top which all types are subtypes of,
and, a type bottom which is a subtype of all other types.

Felix has both these types. The type any is the top type
and is defined by the equation:

typedef any = any;

It is, clearly, a recursive type, since it refers to itself.
Felix uses this type for functions which never return, such as exit.
In principle, any should unify with any type, and every type
should be a subtype of any but Felix currently does not
implement this.

Similarly, Felix has a type void which is the bottom type
defined by

typedef void = 0;

the sum of no units. There are no values of type void.
In Felix, a function returning void is a procedure,
which returns control but no value.

In principle, void is a subtype of all other types,
however Felix does not do this. Instead, void unifies
only with void, and otherwise unification fails.
Were the theoretical subtyping rule applied,
a function with a void parameter would accept an
argument of any type. It would do this by simply
throwing out the argument. However we do not currently
support that.

Functions of void certainly exist, in the category of
sets there is indeed a unique function from void to
every other type: void is simply the empty set,
and a function from the empty set to any other set
is modelled by a set of pairs which happens to be empty.

Felix does in fact use some internal tricks where
a constant constructor, that is, one with no arguments,
is modelled as an injection from void. One can argument
that, in fact, all literal values, are in fact
precisely function from void to a singleton type
containing the value only, as a subtype of the type
of the literal. But we don’t do that, except as
an internal trick.

We may relax these rules later and explicitly
support any and void as top and bottom elements
with corresponding coercions. Unfortunately the
theory of types is based on functional programming
model and fails to properly account for effects.
Because of this, it is dangerous to provide the full
theory, because we would be out of types for
procedures and exits, and we would allow dangerous
compositions which had side effects functions are
not permitted to have.

User Defined Coercions

Felix currently supports a very limited set of coercions
which can be defined by the user. The user defines a function
named supertype which is a coercion from its domain, the subtype,
to its codomain, the super type. For example:

supertype (x:int) => x.long;

says that int is a subtype of long. This means a function
with a long parameter can be called with an int argument.
The domain and codomain must be monomorphic nominal types.
This requirement may be relaxed in future versions.
The compiler does not find composite coercions so
technically to retain coherence the user is required to
define all composites.

Discussion

Felix has certain rules which could be represented
by coercions but, instead, are represented as identities.
In addition, it has some rules which appear to the user
as if they were identities but which are, in fact,
coercions!

In Felix, a record of all anonymous fields is a tuple,
a tuple of all components of the same type is an array,
and an array of one element is that element. These are
identities of the language, not coercions. Although they
appear as a kind of subtyping rule: an element is a special
case of an array which is a special case of a tuple
which is a special case of a record, in fact, these special
cases are only notional.

On the other hand, Felix allows a function to be used when
a function value is required, and that is real implicit coercion.
Indeed, unlike some other languages there are contexts in which
projections and injections can also be used as function values.

This case is a real coercion. Not only does the compiler
use quite distinct terms internally, but the generated
C++ code is also quite distinct. For example, a function in
Felix in general form is represented by a C++ class, whereas
a function value is a pointer to a heap allocated object
of that class type, completely different kinds of entity.

Nevertheless coherence concerns exist, especially mixing
these morphisms with subtyping conversions. It may surprise
a user that this is a match:

fun f(p: int * long) => ...
.. f (field="Hello", 1,2) ..

assuming that we have a coercion from int to long, however the
application of f here fails:

fun f(p: int * long) => ...
.. f (1,2) ..

even though we just dropped the field of string type, which
was thrown out by the record coercion anyhow, because now,
the argument is an array of two ints, and the same coercion
must be applied to all elements, and no coercion exists to
convert the array of two ints to a non-array tuple.
With the string field in place, distinct coercions were
allowed.

Such surpises arise in most languages. The most common
is more annoying than surprising: one wants a value of
the type of some entity which, in the language, is
only a second class citizen. For example modules in
Ocaml (until recently!) or type classes in Haskell.

By comparison, in many dynamically typed languages a lot
more entities are first class, of necessity. This is because
the languages are traditionally interpreters, and the first
class values must exist for the interpreter to work at all.
This is an often overlooked reason why programmers like
dynamic languages: it is not, as many claim, that they dislike
static typing as such, but because static type systems are
extremely weak by comparison. The extensibility of a large
set of Python programs by dynamically loading user extensions
to a framework are simply impossible without run time
type checks.

Another overlooked features is that consistent and well
documented run time type checks actually facilitate dynamic
extension. By comparison whilst the same effect can always
be obtained in a statically typed language, the programmer
of such a system has to reinvent the wheel to obtain
dynamics. Python, for example, has a well specified
layout for module lookup tables and for type objects
which greatly simplify the task of dynamic extension
whilst also constraining the kinds of extensions that
can be provided to those that are readily supported by
the existing framework.

It is indeed quite suprising to find that completely open
nature of how dynamics can be implemented in static languages
is a severe impediment to reasoning about such systems,
not an advantage as often claimed. It is not uncommon,
for example, for programmers of strongly typed static
languages to resort to parsing strings to implement
dynamics.

It is disappointing, for example, that in Felix whilst
the type laws

3 = 1 + 1 + 1
int * int = int ^ 2

hold, the law

int + int = 2 * int

does not. In fact, the standard representation of sum types
and unions does in fact use a pair consisting of a an integer
tag and a pointer to the constructor argument, there are
also special cases for unions which use more compact and
efficient representations, which thereby break the law
at the representation level. For example the representation
of an list uses a single pointer, not a pair, with the
NULL value representing the Empty case and a non-NULL
value representing a non-empty tail. Similarly, a
standard C pointer which could be NULL, is in fact
the representation of the type:

union Cptr[T] = nullptr | &T;

which allows Felix to use possibly NULL pointers from C
directly in the language without any binding glue.
Similarly the representation of int + int is optimised
to a single pointer with the discriminant tag in the low
bit of the pointer. Its a nice trick for performance but
the C code is not the same as the representation of
2 * int even though it is isomorphic.

It may seem tempting to introduce many identities and
representations as subtyping coercions but the unfortunate
fact is that such apparent simplification actually ends
up breaking the coherence rule for subtyping and thus
is inadmissable. No matter what representations you choose,
some coercions will always be value conversions rather than
simply type casts.

Dynamic languages, on the other hand, rarely have this
problem because all the conversions are run time value
conversions: in some sense, dynamic systems are, in fact,
more coherent than static ones.

Open Recursion

Open/Closed Prinicple

One of the most fundamental principles of programming languages
is that the language should support some kind of module which
is simultanously open for extension, yet also closed so it may
be used without fear changes will disrupt usage.

This principle was clearly stated by Bertrand Meyer in his
seminal work “Object Oriented Software Construction”.
It was a key motivator for the idea of a class which
provided a closed, or encapsulated resource with
a closed set of well specified methods to manipulate it,
whilst at the same time being available for extension
via inheritance.

As it turns out this idea fails because identifying a module
with a single type is the wrong answer. Never the less the
core concept is very important.

The Hard Working Programmer

An unenlightened programmer is asked to provide a term representing
an expression which can perform addition on expressions. This is the
type:

typedef addable = (
 | `Val of int
 | `Add of addable * addable
)
;

and here is the evaluator:

fun eval (term: addable) =>
 match term with
 | `Val j => j
 | `Add (t1, t2) => eval t1 + eval t2
;

This solve the problem quite nicely. Unfortunately the
client asks for an extension to include subtraction.
The programmer used copy and paste polymorphism
to get this type:

typedef subable = (
 | `Val of int
 | `Add of subable * subable
 | `Sub of subable * subable
)
;

and here is the new evaluator:

fun eval2 (term: subable) =>
 match term with
 | `Val j => j
 | `Add (t1, t2) => eval2 t1 + eval2 t2
 | `Sub (t1, t2) => eval2 t1 - eval2 t2
;

This seems reasonable, we still have the old addable type,
but the modifying the original code in your text editors
is a pretty lame way to go: what happens if there is a bug
in the original routine? Now you have to remember to fix
both routines.

Would it surprise you if the client now wants to multiply
as well?

The Lazy programmer

The smart programmer writes the same addable routine
as the stupid programmar. But the smart programmers is not
surprised when the client wants and extension. The smart
programmer knows the client will want another one after that too.

So the smart programmer writes this:

typedef addable'[T] = (
 | `Val of int
 | `Add of T * T
)
;

fun eval'[T] (eval: T-> int) (term: addable'[T]) : int =>
 match term with
 | `Val j => j
 | `Add (t1, t2) => eval t1 + eval t2
;

typedef addable = addable'[addable];
fun eval (term:addable) : int => eval' eval term;

Now to see why this is a really cool solution:

typedef subable'[T] = (
 | addable'[T]
 | `Sub of T * T
)
;

fun eval2'[T] (eval2: T-> int) (term: subable'[T]) : int =>
 match term with
 | `Sub (t1, t2) => eval2 t1 - eval2 t2
 | (addable'[T] :>> y) => eval' eval2 y
;

typedef subable = subable'[subable];
fun eval2 (term:subable) : int => eval2' eval2 term;

What you see here is that there is no code duplication.
The new subable’ type extends the old addable’ type.
The new eval2’ routine calls the old eval’ routine.

This is the extension required by the open/closed
principle. On the other hand, by making these parametric
entities refer to themselves we fixate them to obtain
a recursive closure.

Open Recursion

The method shown above is called open recursion.
In its simplest form above it requires polymorphic variant types
and higher order function.

With this technique, we make flat, linearly extensible
data types by using a type variable parameter in the type where would
normally want recursion. Similarly in the flat function,
we use a function passed in as a parameter to evaluate
the values of the type of the type variable.

The flat forms are extensible, so these type are open.

But when self-applied, the types become closed
and directly usable.

So the technique provides a method to define a type with
a discrete number of cases, and an an evaluator for it,
and to extend the type to one with more cases, without
impacting uses of the original type, and critically,
without repeating any code.

Subtyping and Variance

Its important to understand why the technique above
works, but an object oriented solution does not.

What you may not have realised is that this works:

fun f(x:addable) => eval2 x;

What? Yes, addable is a subtype of subable. First, it is a width
subtype, because addable has less cases. But that is not enough.
As well, the arguments of the constructors are subtypes as well.
Because they, too, have less cases. This is called depth subtyping.
It applies recursively, and the subtyping is said to be covariant.

Object orientation cannot do this, because method arguments
in derived classes must be contravariant whereas we want
them to be covariant. You would like to do this:

class Abstract {
 public: virtual Abstract binop (Abstract const &)const=0;
};

class Derived : public virtual Abstract {
 public: Derived binop (Derived const &)const;
};

where you see because the argument of the binop method has varied
along with the derivation direction, it is said to be covariant.
The problem is, the argument of a method must be either invariant
meaning the same type as in the base, or contravariant meaning
a base of the base! The return type is covariant, and that is allowed
but covariant method arguments are unsound and cannot be allowed.

You can do this:

class Derived : public virtual Abstract {
 public: Derived binop (Abstract const &other)const {
 Derived *d = dynamic_cast<Derived*>(&other);
 if (d) { ... }
 else { .. }
 }
};

But how do you know you covered all possible derived classes
in the downcast? You don’t. If someone adds another one,
you have to write code for it, and this breaks encapsulation.

The simple fact is OO cannot support methods with covariant
arguments which restricts the utility of OO to simple types
where the methods have invariant arguments. OO is very good
for character device drivers, because the write method
accepts a char in both the abstraction and all the derived
classes: it is an invariant argument.

Mixins

It is clear from the presentation that any number of extensions
can be added using open recursion in a chain. This means you can
form a whole tree of extensions with subtyping relations from
the leaves up to the root. Lets make another extension:

typedef mulable'[T] = (
 | addable'[T]
 | `Mul of T * T
)
;

fun eval3'[T] (eval3: T-> int) (term: mulable'[T]) : int =>
 match term with
 | `Mul (t1, t2) => eval3 t1 * eval3 t2
 | (addable'[T] :>> y) => eval' eval3 y
;

typedef mulable = mulable'[mulable];
fun eval3 (term:mulable) : int => eval3' eval3 term;

Its the same pattern as subable of course. The question
is, can we combine this with subable, so we can do
addition, subtraction, and multiplication?

typedef msable'[T] = (
 | subable'[T]
 | mulable'[T]
)
;

fun eval4'[T] (eval4: T-> int) (term: msable'[T]) : int =>
 match term with
 | (subable'[T] :>> y) => eval2' eval4 y
 | (mulable'[T] :>> a) => eval3' eval4 z
;

typedef msable = msable'[mslable];
fun eval4 (term:msable) : int => eval4' eval4 term;

The problem here is that both subable’ and mulable’ contain
the case for Add and Val. You will get a warning but in
this case it is harmless (because it is the same case).

Here’s some test code:

val x = `Sub (`Add (`Val 42, `Add (`Val 66, `Val 99)), `Val 23);
val y = `Mul (`Add (`Val 42, `Mul (`Val 66, `Val 99)), `Val 23);
val z = `Sub (`Add (`Val 42, `Mul (`Val 66, `Val 99)), `Val 23);

println$ eval2 x; // subable
println$ eval3 y; // mulable

println$ eval4 x; // subable
println$ eval4 y; // mulable
println$ eval4 z; // msable

Note that eval4 works fine on x and y as well as z!

Cofunctions

Yield

In many programming languages today, there is a special
instruction usually called yield which allows a procedure
to return a value, suspending its execution state in such
a way it can resume where it left off.

gen producer () : int = {
 var i = 0;
again:>
 yield i;
 ++i;
 goto again;
}

This is a simple example of what is called a yielding generator
in Felix. A generator is a function like construction which
may return a different value on each invocation, depending
on some mutable state. The prototypical generator is rand
which returns a random number.

The yield instruction seen above is similar to return,
however the producer above does not loose its current
location or local variables when it provides a value,
instead it suspends so that it may be resumed and
continue on where it left off.

You can use the generator above like this:

var next = producer;
var current = next();
while current < 10 do
 println$ current;
 current = next();
done

The key here is that the variable next is used to store
the suspended state of the producer as a closure, which
is resumed by each call.

Iterators

This particular kind of construction is also known as
an iterator in Python. In C++ it is called an
input iterator although the use is slightly different,
and the definition is via a class object.

In general, iterators can be constructed in any object
oriented language using an object with mutable state and
a get method which simultaneously returns a fresh value
and also updates the state so the next value can be calculated.

However, OO based iterators are weak compared to yielding
generators because the yield instruction automatically saves
the current location in the generator.

Cofunctions

I want you to see that an iterator is roughly a function
turned inside out and therefore deserves the technical
name cofunction. The natural output of an iterator is
a stream, but there is more: it a temporal stream.

Functional programming models have a very serious weakness
which is that they attempt to be atemporal. Advocates
laud the fact that an FPL is primarily declarative.
Data structure are indeed spatial, but there is more
to programming that space, and more to programming than
data and functions.

Cofunctions provide a space time transform. You can take
a list and produce a stream. A purely spatial, linear
data structure has been converted actively into a temporaly
linear sequence of codata.

Where data lives at addresses, some of which may be adjacent,
and others linked indirectly by pointers, codata has
temporal coordinates, marked by a clock.

The world of space and time provide the coordinate system
of a program, and the flow of control explains how an
algorithm looks at one location at one time, but progresses
the construction of new data by simultaneous spatial and
temporal sequencing. You move down the list, physically,
and you do so in time.

A cofunction, therefore, is an iterator over an
abstract data structure, which produces a stream
of values. The stream has no natural end and this
is a fundamental property which is entirely misunderstood.

Many people think streams are infinite lists but this
is in fact completely and utterly wrong. It is hard to
comprehend how such fundamentals are so badly misunderstood.

Contrary to popular belief, inductive data types like lists
are infinite, whereas streams are finite! It is not hard
to understand when one realises that computing is like
science not mathematics, it requires a concept of
observation.

Suppose I give you a list and ask you how long it is:

 fun len (x: list[int]) => match x with
 | Empty => 0
 | Cons (head, tail) => 1 + len tail
;

You would use that algorithm and say that

[B] -> [C] -> [D] -> *

was length 3. But, you would be wrong! You see, I didn’t
show you the whole list:

[A] -> [B] -> [C] -> [D] -> *

I only showed you the tail starting at B. Now you realise
your answer should have been at least 3. That is the
correct answer because the algorithm for the length counts
in time by following pointers to the end, but it is a singly
linked list so you cannot go backwards!

Let me say that again another way: irrespective of what
exists in space, or not, the only thing that matters is
what you can observe by an effective procedure which
is also called an algorithm.

So we can observe only a lower bound of the size of
a list because we only ever see the tail of the list.
You can never tell, or, measure if the first element
you see is the head of the list.

So we must emphasise again the relativistic nature of
computing: it is all about what you can observe,
not about what is. So inductive data types, like lists,
all have the same structural property that observations
are finite, but are necessarily only lower bounds.

Because the list could be longer than any calculated
bound we have to assume it is, because no observation
can contradict that assumption, in other words,
lists are infinite!

Now it is vital to understand that a functional
observation of some property, is intrinsically bounded.
Suppose you write a function and make a mistake and
write an infinite loop. The function never returns,
so it is not, in fact able to be used to make
an observation: it is not an algorithm.

So I am now going to blow your minds, by claiming
that due to duality, streams are finite, and,
in fact, when you make an observation on a stream,
you are producing an upper bound.

Suppose you have a an iterator producing a stream
of all the integers. You might think, this is
an infinite stream but you could not be more wrong!
If it were infinite, an program using the stream
to perform a calculation would never terminate!

Let us see how to measure the length of a stream:

gen observer () : int = {
 var next = producer;
again:>
 var current = next();
 println$ current; // observation
 yield current;
 goto again;
}

Now here is the critical thing: to actually
use a stream and calculate some value, we have
to impose a bound on our observations:

gen sum () : int = {
 var it = observer;
 for i in 0 ..< 10 perform
 x += it();
 return x;
}

Now if we call sum, how many prints do you see?
Did you say 10? So you think, the stream is at least
10 long but, you have it arse about.

Suppose you only saw two:

gen producer () : int = {
 var i = 0;
 yield i;
 yield i + 1;
 yield i + 2;
 again: goto again;
}

If you see this producer it produces 3 values, then it
goes into an infinite loop. So you can write code
that reads the first 4 values from it, and that code
will never return. It does not make any observation.
If you reduce the number to 3,2,1, or 0, you get an observation.

Now think about the producer code itself, and ask, how many
values does it produce? Well, if it is called 10 times
it produces 3 values. If it is called 9 times it produces 3 values.
if it is called twice it produces 2 values. And it if it is never
called, it produces NO values.

So the number of values produced by our iterator above is what?
You got it! It is at most 3.

Streams, by their nature, are finite, not infinite!
They are characterised by an upper bound.

All streams are finite, in the sense of a program being
a terminating algorithm, and functions, necessarily,
most complete and return a value or they’re not functions.

Coroutine Basics

Coroutines are not a new concept, however they have been ignored for
far too long. They solve many programming problems in a natural way and
any decent language today should provide a mix of coroutines and procedural
and functional subroutines, as well as explicit continuation passing.

Alas, since no such system exists to my knowledge I have had to create
one to experiment with: Felix will be used in this document simply
because there isn’t anything else!

A coroutine is basically a procedure which can be spawned to begin
a fibre} of control which can be {em suspended} and {em resumed under program
control at specific points. Coroutines communicate with each other
using synchronous channels to read and write data from and to other
coroutines. Read and write operations are synchronisation points,
which are points where a fibre may be suspended or resumed.

Although fibres look like threads, there is a vital distinction: multiple
fibres make up a single thread, and within that only one fibre is ever
executing. Fibration is a technique used to structure sequential programs,
there is no concurrency involved.

In the abstract theoretical sense, the fundamental property possessed by
coroutines can be stated like this: within any thread, there exists some
total ordering of all events. The ordering may not be determinate, but of any two
events which occur, one definitely occurs before the other.

In addition, events associated with one fibre which occur between two synchronisation
points, are never interleaved by events from another fibre of the same thread.
All interleaving must occur interior to the synchronisation point, that is,
after it commences and before it completes. In other words, given a sequence
of events from one fibre prior to a synchronisation point, and a sequence of
event from another after a synchronisation point, all the events of each
sequence occur before or after all the events of the other.

Premptive threads, on the other hand, allow arbitrary interleaving of
each threads sequence of events, up to and after any shared synchronisation.
Mutual exclusion locks provide serialisation, which is the default behaviour
of coroutines.

Therefore, fibre based programming can proceed where general code
may assume exclusive access to memory and other resources over all
local time periods not bisected by a volutary synchronisation event;
threads, on the other hand, can only assume exclusive access in the
scope of a held mutex.

The most significant picture of the advantages of coroutines is thus: in a subroutine
based language there is a single machine stack. By machine stack, I mean that
there is an important implicit coupling of control flow and local variables.
In the abstract, a subroutine call passes a continuation of the caller to
the callee which is saved along with local variables the callee allocates,
so that the local variables can be discarded when the final result is
calculated, and then passed to the continuation. This technique may be
called structured programming. With coroutines, the picture is simple:
each fibre of control has its own stack. Communication via channels exchanges data
and control between stacks.

Coroutines therefore leverage control and data coupling in a much more
powerful and flexible manner than mere functions, reducing the need for
state to be preserved on the heap, thereby making it easier to construct
and reason about programs.

For complex applications, the heap is always required.

A Simple Example

The best way to understand coroutines and fibration is to have a look
at a simple example.

The Producer

First, we make a coroutine procedure which writes the integers
from 0 up to but excluding 10 down a channel.

proc producer (out: %>int) () {
 for i in 0..<10
 perform write (out, i);
}

Notice that as well as passing the output channel argument out
there is an extra unit argument (). This procedure terminates
after it has written 10 integers. The type of variable out is
denoted %>int which is actually short hand for oschannel[int]
which is an output channel on which values of type verb%int% may
be written.

The Transducer

Next, we make a device which repeatedly reads an integer, squares it,
and writes the result. It is an infinite loop, this coroutine never
terminates of its own volition. This is typical of coroutines.

Here, the type of variable inp is
denoted int which is actually short hand for verb%ischannel[int]%,
which is an input channel from which values of type verb%int% may
be read.

The Consumer

Now we need a coroutine to print the results:

proc consumer (inp: %<int) () {
 while true do
 var y = read inp;
 println y;
 done
}

Each of these components is a coroutine because it is a procedure
which may perform, directly or indirectly, I/O on one or more synchronous
channels.

What’s Wrong With C++

This article is intended to clearly specify fundamental problems in C++.
There are many problems, in any language, but the concern here is with
serious core issues.

Syntax

C and C++ have really bad syntax. C started out weak, got worse,
C++ inherited the problems, and then made them worse again.

To understand how bad it is, we look at a brief history.
Originally K&R C was designed so that top level constructions, at least after
pre-processing, could be rapidly parsed in a single pass and
in isolation. Type checking was, to the extend it allowed it, also possible
in a single pass over the whole translation unit.

The fundamental reason this was possible was that the set of types
were fixed and represented syntactically by keywords such as int
or double. User defined types in the form of struct definitions
were allowed, however the types had to be refered to using
the struct keyword and a tag. Because of this, an incomplete
type could be used in a type defintion, and correctly parsed.

In particular, consider these fragments:

(X)(y) /* function application */
(struct X)(y) /* cast */

There is no need to see the surrounding context. In other words, the
language was context free.

Unfortunately the ANSI committee came along and destroyed this property
by introducing typedef. Consequently the first case above is ambiguous,
and can only be correctly parsed if the whole of the previous code
is seen, in case X is type introduced by a typedef.

The loss of context freedom was a serious mistake for C, but for modern
C++ it is an unmitigated disaster. C++ programmers today use a lot of
templates and many libraries are header file only and every compilation
of every translation unit has to parse all the header files sequentially,
every time.

However the situation was even worse than that! With templates,
it is not possible to tell if X is a type or not, just be parsing
all the header files. The following example shows why:

template<class T>
void f() { int x = (T::X)(g); }

If T is instantiated by a class which contains X as a typedef,
then the RHS of the assignment is a cast, if X is a function,
then it is a function application. Without any further information,
the template cannot be parsed at all.

The ISO C++ committee introduced a new keyword to fix this, typename:

template<class T>
void f() { int x = (typename T::X)(g); }
// its a cast!

If you don’t use typename then its a function application.

The real situation is worse again because you can also pass
templates as arguments!

There are other cases in C++ where parsing is ambiguous.
The most famous is that it is impossible to tell the difference
in C++ between an declaration and an initialisation:

T f(X);

This could be declaring the function f, returning type T
and accepting type X, or, it could be an initialisation
of the variable f, of type T, to the value X.

The ISO C++ committee introduced disambiguating rules, but again,
the choice depends on context. Luckily C++ has other, non-ambiguous
ways to achieve the required result, but still, this yet another
serious design fault which makes parsing difficult.

Of course the famous problem with >> in templates is well
known, which stems from another serious mistake in ARM C++
using < and > as brackets, as well as comparison operators.

The need for context to parse C and C++ is not merely a problem
for the compiler, it is a problem for the reader as well.
And it is an even worse problem for the programmer when trying
to refactor code.

In addition, the C++ committee had a desire when adding new features
to avoid introducing new keywords, so many constructions are introduced
by syntactic forms which are hard to decipher and in many cases
the design is actually flawed because it fails to allow syntact
distinctions to be made which have semantic impact.

The worst example of this is the template specialisation
syntax. Contrary to popular belief, function templates
cannot be specialised, only overloaded, however
class member function can be specialised, but not
overloaded! For example:

template<class T>
void f(T);

template<class U>
void f<vector<U>>(vector<U>);

This looks like it is declaring a specialisation of
the function template f, but it isn’t. It is actually
introducing a completely new function which happens
to be defined by a specialistion of the original f.

The new function overloads with the original one,
and since it is more specialised will be selected
by overload resolution. However a real specialisation
has no impact on lookup at all, only on instantiation.
This is the case for classes:

template<class T>
class X { void f(T); };

template<class U>
class X<vector<U>>;

This introduces a specialisation, and by default
the member f is also specialised .. there is no
overloading here. Even if a replacement is defined
for the f, this has no impact on overloading.

The problem is that the committee didn’t understand
the difference between these two cases and provided
a syntax in which it is impossible to distinguish them.
Hence, function template specialisations are overloads
not specialisations, because some choice had to be
made given the faulty syntax.

No type checking in templates

This is a very serious design fault. Templates should introduce
polymorphic types and functions, but they do not, because
they cannot be type checked. Therefore, templates are just
syntax macros, and the result is a disaster.

Recently there was an attempt to solve this problem the
way Haskell does with type classes: the feature known
as concepts. Unfortunately the design was rejected and
replaced by a much weaker version known as concepts-lite.

If templates could be type checked, this would mean
instantiations would not require type checking:
all instantiations would be guaranteed to be correct.
That also means the instantiation would be entirely independent
of context, and in particular two instantiations with the
same template arguments in different places would necessarily
be the same type.

Lvalues and references

In C, a variable name has two distinct meanings
depending on context. If it is used on the LHS
of an assignment, or as the argument of the addressof operator,
then it represents a storage location. The assignment puts
a value into that location, and the addressof operator finds
a pointer to that location.

In C, the context where a variable name is treated as
refering to a storage location is called an l-context,
other contexts are called r-contexts. The l and r
refer to which side of an simple assignment it might be.

A variable name is an lvalue which means it refers to
a storage location in an lcontext, but the value stored
at that location in an rcontext.

Similar rules apply to, for example, pointer dereferences.
Certain syntactically recognisable expressions in C are
said to be lvalues, others are rvalues. Lvalues can be used
in both lcontexts and rcontexts, in an rcontext the lvalue
degrades to an rvalue. An rvalue cannot be used in an lcontext.

In summary in C, the semantics of certain expressions depends
on a context which is locally syntactically determinate.

The ambiguity is bad, and causes a lot of confusion, but
the disambiguation is possible by simply examining the
expression in isolation and following the rules layed
down in the C Standard.

Unfortunately C++ introduced a notion of references
and reference types and all hell broke loose!
Because a reference is universally an lvalue, but is
also a type, it is not longer possible to determine
the meaning or correctness of an expression from local syntactic
examination. For example

f(x) = g(y);

would never be allowed in C (after pre-processing), because the
LHS does not have the syntactic form of an lvalue. In C++,
you need to examine the function f to see if it returns a non-const
reference to determine if the above code is correct: and that also
means determining the type of x because the function f could be
overloaded. If we replace x with an expression:

f(h(x)) = g(y);

we now have to type the expression h(x) which recursively involves
overload resolution for h.

This may seem complicated but the situation is much worse.
For a start, the ARM was very confused about overloading
function with reference type arguments:

void f(int);
void f(int&);
void f(int const&);
int x=1;
f(x); // which f?

What is the type of x? It is an lvalue, but it has type int,
but lvalues are replaced by references, so the type should
actually be int&. But consider now:

int &x = y;

and clearly x now refers to the same store as y, so the type
is int& but the definition has quite distinct semantics from
an int definition: an int definition creates a new store to
put an int in, the int& definition causes x to refer to
existing store. The types in an expression are the same however,
and that means f(x) must call the same overload in both cases.

The ARM got this wrong. The ISO committee debated this issue at length
and resolved it, but they chose the wrong solution. The correct solution
was to throw out the whole idea of reference types: instead a perverted
form of reference types was introduced in which they were just renamed
as lvalue types.

It is legitimate to allow function arguments to be passed by reference,
and this is certainly part of the type information of the function,
but references have no place as types in themselves because they
are not proper type constructors.

A polymorphic type constructor must be combinatorial for
parametric polymorphism to work. For example for any type T,
the type *T makes sense, it is the type of a pointer to T.
The pointer type constructor is properly parametric
because it can be applied to any type, including another pointer
type.

References are not combinatorial, it is nonsense to take a reference
to a reference. No one would do this in practice in monomorphic code
so it might be excused but for templates.

If a reference is a type, then a template type parameter could be
set to one, and then all hell breaks loose because it changes,
utterly, the semantic of the template.

template<class T>
void f() { T x = T(); }

In this template, all is fine provided T has a default constructor.
But what can we say if T is a reference:

f<int&>();

Since references don’t have default constructors, we get error.
But consider this one:

template<class T>
void f(T x, T y) { x = y; }

For a value type T, f does nothing, except perhaps exhibit the behaviour
of an overloaded assignment operator. But if T is a reference
this code has an effect, it assigns the value of y to the
location to which x refers.

In theory, there is no need for references at all. Pointers are perfectly
good enough and pointer calculations are purely functional. They are
first class types and the pointer constructor is parametric.

Introducing references was a serious design fault. It has lead
to introduction of even worse design faults including decltype
to handle the problems.

Const

Const is another thing inherited from C and messed up in C++
very badly.

In C, the type syntax makes it seem like you can have a const type.
This is not the case. The syntax is misleading, there are no const types
in C. In C there are pointers to const, and that is all.

It may seem otherwise examining this code:

int const x = 1;
int const *px = &x;

In C, x has the type int, not const int. Rather, C introduces a new
form of lvalue, a const lvalue. If you take the address of a const
lvalue you get a pointer to const. But as an rvalue, x has type int.

Of course it works the other way too:

*px = 1; // error, const lvalue!

Because px is a pointer to const, a derefernce produces a const
lvalue which can be addressed but not assigned to.

Const lvalues in C cause a problem though because now, the kind
of lvalue is context dependent. In C++ this is true as well.

There is another problem with const: that which is pointed
at by a const pointer need not be immutable because of aliasing.
C introduced the restrict keyword to enhance optimisation opportunities
since overlapping array arguments were never allowed in Fortran,
and Fortran remained the premier numerical programming language for
decades (and still is). Restrict disallows aliasing and so a
restricted const pointer, whilst still does not pointer to immutable
store, can be assumed to point at store which doesn’t change during
the lifetime of the function.

In C++ all hope is lost when we consider templates. Because both
const and reference are effectively types, the semantics of a template
are utterly indeterminate until it is instantiated. Weird effects
can occur, and be type correct, when instantiating a template
with a const and/or reference type.

Offsets

In C, address arithmetic can be done with casts, and by use
of the offsetof macro. The result isn’t type safe, but
all useful calculations can be done.

In C++, a type safe version of the offsetof macro was introduced,
namely a type pointer to member. Unfortunately, the ISO committee
again made a mess of things by insisting on pointers to members working
with virtual functions and classes. As a result, the full calculus is
incomplete.

In principle, if you have a struct nested in another struct,
you should be able to calculate the offset of a member of the inner
struct by adding the offset of the member of the outer struct with
respect to the outer struct, to the offset of the inner member,
with respect to the inner struct, obtaining the offset of the inner
member with respect to the outer struct. Unfortunately, there is no syntax
to do this addition, in part because the calulation cannot be done in
the presence of bases. The problem is, you need to know the layout
of the classes to do the operation: given a pointer to the outer struct,
you can add the outer pointer to member, then the inner one, to obtain
a pointer to the inner member, but the operation isn’t associative,
so you cannot add the pointers to members together first.

Of course it can be done with a closure, that is, with lazy evaluation,
but this requires a pointer to member to be an arbitrarily complex
data type with indeterminate storage requirements.

Pointers to member of ordinary non-OO style structs are vitally
important because they are first class projections, and they should
be composable.

Object Orientation

Adding OO to C gave us the slogan for early C++ as C with classes.
It seemed like a good idea at the time, but object orientation
is fraught with peril and it has been established for a long time
that it does not provide a general mechanism for providing abstract
data types. This is due to what is called the covariance problem,
which requires the argument of a method to be contra-variant.
Unfortunately to implement a binary operator we require covariance,
and so OO cannot represent even binary operators. It is still useful
when a method has no arguments, that is, for properties, or, when
the arguments are invariant, for example for character device drivers.

No one takes OO seriously in modern C++: most programming uses templates
which is roughly functional programming.

Classes introduced a whole host of bugs. Arrays of value of a derive type
can be implicitly converted to arrays of the base type via the degradation
of array types to pointers to the first member, which then results in
increments and random accesses to the array using the size of the base
type as an offset instead of the derived type.

This is not the only unsound feature introduces. Another well known
example is the ability of a class constructor to export a non-const pointer to
itself, even if the value is specified as const. This is because in the body
of a constructor the this pointer is non-const, which is required for
storing values in the object.

Another related unsoundness in the type system is that in a constructor body,
the whole of the currently in scope class is visible, including bases.
Unfortunately, with muliple inheritance there is no assurance that all
the bases have been constructed yet.

Worse, the constructor body can invoke a virtual function which would,
after the whole object is built, dispatch to a method of the complete type.
In single inheritance, the virtual table can be built for the base first,
so a dispatch in a derived class constructor will work correctly for that
point in time provided it doesn’t dispatch to a method in the current
class and depend on members which have no yet been set.

Unfortunately, with multiple inheritance and virtual bases,
it is not possible to assure the correct virtual table is installed,
because a virtual base can dispatch to an as yet unconstructed derived
class which is not even visible to the current class. This is known
as sibling dispatch:

struct V { virtual void f()=0; };
struct D : virtual V { void f(); };
struct E : virtual V { E() { f(); } };
struct X : E, D {};

The problem here is that E is constructed first and it calls f() which dispatchs
via its base V to D’s override of f. The problem is D hasn’t been constructed
yet and so the virtual table in V points f off into thin air, typically
to a run time diagnostic followed by a program abort which usually says that
a pure virtual has been called. Of course once X is completed the dispatch
would work just fine.

How Felix fixes the problems

Felix fixes all the above problems.

Parsing

First, the language is designed so that, with one exception,
all top level constructs, including any file, can be parsed
independently of context.

All files can be parsed independently of all others, however
the rule for constructions has an exception: if a scope,
including a file scope, opens a syntax module (called a DSSL
in Felix), then the grammar parsed changes from the current
grammar at the point of the open directive.

Opening new grammar is unusual in most code, and when used
in a file it is usually done at the top of the file so it
applies to the whole file. The grammar extensions are scoped
so they cannot be exported from the file, and, if used
inside some scope such as a class, they cannot be exported
from the class.

Syntactic complexity

Felix fixes the arcane complexity of C++ by the simple expedient
of throwing out the whole grammar and starting afresh.

Indeed, the grammar in Felix is part of the library, in user space,
so considerable complexity can and is introduced, but there is
an opportunity to design the syntax in a sane manner.

One specific feature that should be noted is that in Felix
there are no keywords. Felix uses a GLR+ extensible parser
and recognises identifiers as keywords only in a context sensitive
manner. There are a lot of such context sensitive keywors but
they can be designed into the grammar with impunity because
most of the time they are effective only in the context for which
they’re introduced, and where there is an conflict, Felix provides
a special lexical form to force recognition of an identifier.
For example:

var var = 1;
n"var" = var;
println$ var;

Here, the first var is in a context where it is treated as a keyword whilst
the second is not, so it is treated as an identifier. The third use would be
treated as a keyword so we use the special lexeme which forces interpretation
of an identifier. The fourth and fifth contexts treat var and an identifier.

Lvalues and references

Felix has no concept of a reference, it just uses pointers.
There is only one allowed kind of lvalue, namely a variable name,
and only one operation on it, namely to take its address.

In principle even this is not the case: in Felix a variable
definition of a name x is actually a pointer which has to be
dereferenced to get a value, but the language does this automatically
and the use of the addressing operator merely inhibits this
behaviour.

Felix uses the following to store values:

var x = 1;
var px = &x;
px <- 2;
storeat (px, 2);
&x <- 1;
x = 1;

The <- symbol is an infix operator which invokes the storeat procedure,
which is the only way to store a value supported by the language.
The last line is an assignment, but that is actually syntactic sugar
for a call to the storeat procedure to the address of the LHS,
and it cannot be used for components of a product type, only simple
variables.

To store values into the component of a product type, Felix uses
first class projections which apply to pointers. For example:

struct X { x:int; };
var a = X (1);
&a.x <- a.x + 1;

In the last line, the RHS symbol x is actually a value projection of type:

X -> int

Projections are first class functions. There is no “member access syntax” either.
Instead, operator dot (.) is unniversally just reverse application. Therefore
you can write this as well:

x &a <- x a + 1;

Here you can see x is overloaded so that as well as the type of the value
projection, there is also an overload for pointers:

&X -> &int

This overload calculates the address of the member and so now you can
store in the member.

Const

Felix, like C++, has a const pointer type, however unlike C++ there
are no references (they’re not needed, see above). And there is
no confusion about const types, there is no such thing in either
language but in C++ the syntax suggests there is. Instead in Felix
we have read only and write only pointers:

x &>a <- *(x &<a) + 1;

The LHS address of operator returns a write only pointer, whilst the
RHS operator a read only pointer. Read/write pointers use the plain &
operator and the type is a subtype of both read only and write only
pointers.

Object Orientation

Felix fixes this problem by annihilation. There is no OO in Felix.

Index

Correct C++ Object Design

Many books and articles give incorrect advice on C++ object design.
Here’s the correct advice.

Rule 1: Do not call public members

Public methods are for the public only and should never be called
by any member of a class. Public methods accept untrusted values from
clients, and check these values to enforce representation invariants.

Once an invariant is established, checking it again is bad. Not only
does this involve a performance overhead, within a method, an invariant
may temporarily not hold.

code-block:: c++

	class Rat {

	int num;
int denom;

	public:

	void set(int x, int y) { assert (y!=0); num = x; denom = y; }

};

Here the set function aborts if the value to become the denominator
is zero, otherwise setting the provided values. On exit, the object
satisfies the required invariant.

Rule 2: Nonconstructor public methods assume invariants

A public method should assume the representation invariant
holds on entry and must ensure it holds on normal exit.

In particular, they must not check the invariant holds on entry.
Obviously the invariant may not hold on entry to a constructor.

Rule 3: Private Virtual calls protected and called by public

Consider the following design:

code-block:: c++

	struct node {

	int data;
node *next;

};
class list {

node *head;

	public:

	
	void push(int x) {

	head = new node{x,head};

}

};

The problem with this simple design is that it is not thread safe.
Lets see how to do it right

code-block:: c++

	class list {

	node *head;
virtual void push_virt(int x) { push_impl(x); }

	protected:

	
	void push_impl (int x) {

	head = new node{x,head};

}

	public:

	void push (int x) { push_virt(x); }

};

	class ts_listpublic virtual list {

	std::mutex m;

	// hidden

	override void push_virt(int x) { push_ts(x); }

	protected:

	
	void push_ts(int x) {

	std::lock_guard<std::mutax> dummy(m);
push_impl(x);

}

};

The public method push is defined in the base only, and dispatches
to the virtual function, which is private.

The protected method push_impl defines the unsafe version of the function.
It is not accessible by the public, but it is accessible in the derived
class.

Rule 5: Do not call overrides

In the derived class the virtual should be completely hidden, but C++
unfortunately does not have such an access mode, so we make it private.
This leads to a core rule: overrides of virtual function must never
be called by anyone. A second rule: the original virtual function
must be private so that only methods of the containing class can access it.

The protected method push_ts sets a serialisation lock to make
the access thread safe and then calls the base class implementation.
This is why that method must be protected and not private.

The overriding virtual dispatched to the protected method.

Rule 6: Split Virtuals

We split the computation of virtual function out explicitly
precisely so it can be called from a derived class without
the infinite loop which would arise if we calls the virtual instead.

The base class protected method assumes an invariant suitable for
its class considered as a complete type: that the access will
be sequentially consistent. In the derived class, designed for
multi-thread use, we have to take steps to ensure this before
calling that method.

In general it is acceptable to write appropriate code in the
derived class protected method, when the base class protected
method is not reusable, however in this case it is.

Solving the Lvalue Problem

In computing, there is a notion of a thing called an object which is
has two properties: it is a region of store containing a value,
and, as storage, it has an address.

Objects are fundamental to computer science, yet the method of dealing
with them in programming languages is badly broken .. in all languages.

Objects in C

To understand the issue we must first go back to C. In C, a variable is
an object. If the variable is used in an expression, it means the value
stored in the object. If it is used on the LHS of an assignment,
or as the argument of the address-of operator, it refers to the store
itself, that is, it means the address.

To handle this situation, in C, we specify two contexts. The argument
of the address-of operator, and some other operators such as prefix ++,
and, the LHS of an assignment, is called a left-, or l-context,
other subexpressions are called right or r-contexts.

Now, we specify that most expressions are right, or r-values, but
some, such as a variable name or pointer dereference, as said
to be left- or l-values.

Context and value kinds are identified entirely syntactically.
C then has a rule, which says that only an l-value may be used
in an l-context. Both l- and r-values can be used in an r-context.
If an l-value is used in an r-context, its meaning is degraded
to that of an r-value.

The idea is that an r-values refers to a value whereas an
l-value refers to the store of an object, that is, an l-expression
specifies an address.

The machinery is a weak attempt to conform to socially accepted
norms of mathematical notation in an inappropriate context:
in mathematics an equation is not an operation but a specification,
in computing an assignment is an operation. The rule catches
possible errors, where the programmer tries to assign to a value
instead of an object: such assignments are harmless but rarely intended.

I will note in passing a complication was introduced in C which
invalidates the original K&R concept, namely const. Assignent
to a const lvalue isn’t allowed, and it isn’t possible to tell
if an lvalue is const syntactically. We need type information
as well.

Objects in C++

In C++, much more powerful notions of objects are introduced.
A big mistake was made, attempting to preserve the idea of lvalues
by introducing references.

Whereas the rules in C do work, although they’re unnecessary semantically,
in C++ the rules do not work. The initial problem in C++ is that with
operator overloading it is no longer possible to tell syntactically if

*p

is an lvalue or not, because the dereference operator can be overloaded.

Now remember ISO C already broke the rules of K&R C by introducing const.
So since we already need type information to determine the correctness
of an assignment, C++ introduced references. With references, we no longer
depend on syntax even to determine if an expression is an lvalue,
we need type information. We need that for const anyhow, so it seems there
is no loss getting the lvalueness property from the type system as well.

Unfortunately, considering references as types is unsound. More precisely,
the referencing operation is a type constructor, but it fails to be
combinatorial.

This actually doesn’t matter if the type system is monomorphic,
however with polymjorphism, all hell breaks loose if constructors
are not combinatorial. Pointer formation is combinatorial,
reference formation is not.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Modern Computing

 		
 Using Uniqueness Types

 		
 Ownership

 		
 Raw Operations

 		
 Problems with Raw Operations

 		
 C++ Strings: Encapulsation

 		
 What is the Real Problem?

 		
 Uniqueness Types

 		
 Example: UniqueCStrings

 		
 Enforcement: An example of usage

 		
 Subtyping in Felix

 		
 Context of Implicit Coercions

 		
 Standard Subtyping Coercions

 		
 Record Coercions

 		
 Tuple Coercions

 		
 Array Coercions

 		
 Polymorphic Variant Coercions

 		
 Function Value Coercions

 		
 Machine Pointer Coercions

 		
 Top and Bottom

 		
 User Defined Coercions

 		
 Discussion

 		
 Open Recursion

 		
 Open/Closed Prinicple

 		
 The Hard Working Programmer

 		
 The Lazy programmer

 		
 Open Recursion

 		
 Subtyping and Variance

 		
 Mixins

 		
 Cofunctions

 		
 Yield

 		
 Iterators

 		
 Cofunctions

 		
 Coroutine Basics

 		
 A Simple Example

 		
 The Producer

 		
 The Transducer

 		
 The Consumer

 		
 What’s Wrong With C++

 		
 Syntax

 		
 No type checking in templates

 		
 Lvalues and references

 		
 Const

 		
 Offsets

 		
 Object Orientation

 		
 How Felix fixes the problems

 		
 Parsing

 		
 Syntactic complexity

 		
 Lvalues and references

 		
 Const

 		
 Object Orientation

_static/up.png

_static/up-pressed.png

